Terahertz absorption of lysozyme in solution.
نویسندگان
چکیده
Absorption of radiation by solution is described by its frequency-dependent dielectric function and can be viewed as a specific application of the dielectric theory of solutions. For ideal solutions, the dielectric boundary-value problem separates the polar response into the polarization of the void in the liquid, created by the solute, and the response of the solute dipole. In the case of a protein as a solute, protein nuclear dynamics do not project on significant fluctuations of the dipole moment in the terahertz domain of frequencies and the protein dipole can be viewed as dynamically frozen. Absorption of radiation then reflects the interfacial polarization. Here we apply an analytical theory and computer simulations to absorption of radiation by an ideal solution of lysozyme. Comparison with the experiment shows that Maxwell electrostatics fails to describe the polarization of the protein-water interface and the "Lorentz void," which does not anticipate polarization of the interface by the external field (no surface charges), better represents the data. An analytical theory for the slope of the solution absorption against the volume fraction of the solute is formulated in terms of the cavity field response function. It is calculated from molecular dynamics simulations in good agreement with the experiment. The protein hydration shell emerges as a separate sub-ensemble, which, collectively, is not described by the standard electrostatics of dielectrics.
منابع مشابه
امکان جذب تراهرتز توسط چاه پتانسیل کوانتمی دو گانه و پایداری آن
In this paper, the optical properties of the quantum double folded potential well in the terahertz frequency region are investigated. The Schrödinger equation is solved and using the obtained wave functions, the standard density matrix and the iterative method the refractive index and the absorption coefficient in the first order is calculated and investigated. The results show that for the pro...
متن کاملDual-band, Dynamically Tunable Plasmonic Metamaterial Absorbers Based on Graphene for Terahertz Frequencies
In this paper, a compact plasmonic metamaterial absorber for terahertz frequencies is proposed and simulated. The absorber is based on metamaterial graphene structures, and benefits from dynamically controllable properties of graphene. Through patterning graphene layers, plasmonic resonances are tailored to provide a dual band as well as an improved bandwidth absorption. Unit cell of the design...
متن کاملTerahertz Circular Dichroism Spectroscopy of Biomolecules
Biopolymers such as proteins, DNA and RNA fold into large, macromolecular chiral structures. As charged macromolecules, they absorb strongly in the terahertz due to large-scale collective vibrational modes; as chiral objects, this absorption should be coupled with significant circular dichroism. Terahertz circular dichroism (TCD) is potentially important as a biospecific sensor, unobscured by s...
متن کاملTerahertz underdamped vibrational motion governs protein-ligand binding in solution
Low-‐frequency collec,ve vibra,onal modes in proteins have been proposed as being responsible for efficiently direc1ng bio-‐ chemical reac*ons and biological energy transport. However, evidence of the existence of delocalized vibra&onal modes is scarce and proof of their involvement in...
متن کاملCollective dynamics of lysozyme in water: terahertz absorption spectroscopy and comparison with theory.
To directly measure the low-frequency vibrational modes of proteins in biologically relevant water environment rather than previously explored dry or slightly hydrated phase, we have developed a broadband terahertz spectrometer suitable for strongly attenuating protein solutions. Radiation is provided by harmonic multipliers (up to 0.21 THz), a Gunn oscillator (at 0.139 THz), and the UCSB free-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 147 8 شماره
صفحات -
تاریخ انتشار 2017